skip to main content


Search for: All records

Creators/Authors contains: "Caire, Giuseppe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available June 25, 2024
  3. Secure aggregation, which is a core component of federated learning, aggregates locally trained models from distributed users at a central server, without revealing any other information about the local users' data. This paper follows a recent information theoretic secure aggregation problem with user dropouts, where the objective is to characterize the minimum communication cost from the K users to the server during the model aggregation. All existing secure aggregation protocols let the users share and store coded keys to guarantee security. On the motivation that uncoded groupwise keys are more convenient to be shared and could be used in large range of practical applications, this paper is the first to consider uncoded groupwise keys, where the keys are mutually independent and each key is shared by a group of S users. We show that if S is beyond a threshold, a new secure aggregation protocol with uncoded groupwise keys, referred to as GroupSecAgg, can achieve the same optimal communication cost as the best protocol with coded keys. The experiments on Amazon EC2 show the considerable improvements on the key sharing and model aggregation times compared to the state-of-the art. 
    more » « less
    Free, publicly-accessible full text available May 28, 2024
  4. We consider the cache-aided multiuser private information retrieval (MuPIR) problem with a focus on the special case of two messages, two users and arbitrary number of databases where the users have distinct demands of the messages. We characterize the optimal memory-load trade-off for the considered MuPIR problem by proposing a novel achievable scheme and a tight converse. The proposed achievable scheme uses the idea of cache-aided interference alignment (CIA) developed in the literature by the same authors. The proposed converse uses a tree-like decoding structure to incorporate both the decodability and privacy requirements of the users. While the optimal characterization of the cache-aided MuPIR problem is challenging in general, this work provides insight into understanding the general structure of the cache-aided MuPIR problem. 
    more » « less
  5. In the coded caching literature, the notion of privacy is considered only against demands. On the motivation that multi-round transmissions almost appear everywhere in real communication systems, this paper formulates the coded caching problem with private demands and caches. Only one existing private caching scheme, which is based on introducing virtual users, can preserve the privacy of demands and caches simultaneously, but at the cost of an extremely large subpacketization exponential in the product of the number of users (K) and files (N) in the system. In order to reduce the subpacketization while satisfying the privacy constraints, we propose a novel approach which constructs private coded caching schemes through private information retrieval (PIR). Based on this approach, we propose novel schemes with private demands and caches which have a subpacketization level in the order exponential with K instead of NK in the virtual user scheme. As a by-product, for the coded caching problem with private demands, a private coded caching scheme could be obtained from the proposed approach, which generally improves the memory-load tradeoff of the private coded caching scheme by Yan and Tuninetti. 
    more » « less
  6. null (Ed.)
    This paper studies the distributed linearly separable computation problem, which is a generalization of many existing distributed computing problems such as distributed gradient coding and distributed linear transform. A master asks N distributed workers to compute a linearly separable function of K datasets, which is a set of Kc linear combinations of K equal-length messages (each message is a function of one dataset). We assign some datasets to each worker in an uncoded manner, who then computes the corresponding messages and returns some function of these messages, such that from the answers of any Nr out of N workers the master can recover the task function with high probability. In the literature, the specific case where Kc = 1 or where the computation cost is minimum has been considered. In this paper, we focus on the general case (i.e., general Kc and general computation cost) and aim to find the minimum communication cost. We first propose a novel converse bound on the communication cost under the constraint of the popular cyclic assignment (widely considered in the literature), which assigns the datasets to the workers in a cyclic way. Motivated by the observation that existing strategies for distributed computing fall short of achieving the converse bound, we propose a novel distributed computing scheme for some system parameters. The proposed computing scheme is optimal for any assignment when Kc is large and is optimal under the cyclic assignment when the numbers of workers and datasets are equal or Kc is small. In addition, it is order optimal within a factor of 2 under the cyclic assignment for the remaining cases. 
    more » « less